$\lambda_{\max }^{\mathrm{MeOH}} 283 \mathrm{~m} \mu$ ($\epsilon 16,700$). The mass spectrum exhibits mol ions at $m / e 372,374$, and major fragments at 339 and 97. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClO}_{2}\right) \mathrm{C}, \mathrm{H}$.
$2^{\prime}, 3^{\prime} \alpha$-Tetrahydrofuran- 2^{\prime}-spiro-17-(6,7 α-difluoromethylene-4-androsten-3-one) (XI). A soln of the dienone IV ($1.00 \mathrm{~g}, 3.06$ mmoles) in 5 ml of redistd triglyme was treated dropwise at 195$200^{\circ}$ over a $2-\mathrm{hr}$ period with a soln of 6.0 g of anhyd sodium chlorofluoroacetate in 50 ml of triglyme. The reaction mixt was poured on ice and then was extd with $E t_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ layers were washed with $\mathrm{H}_{2} \mathrm{O}$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concd. The crude product was eluted from 100 g of silica gel with $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ with increasing conens of $\mathrm{Et}_{2} \mathrm{O}$ up to $5 \% \mathrm{Et}_{2} \mathrm{O}$. The cryst material was separated from heptane to give $628 \mathrm{mg}(55.3 \%)$ of XI: mp 130-132 ; [α]D $+33.7^{\circ} ; \lambda_{\max } \mathrm{CH}_{2} \mathrm{OH}_{2} .5(\epsilon 14,900)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{F}$.

2',3' α-Tetrahydrofuran-2'-spiro-17-(6,7 α-difluoromethylene-1,4-androstadien-3-one) (XII). A soln of XI ($625 \mathrm{mg}, 1.66 \mathrm{mmoles}$) and DDQ ($497 \mathrm{mg}, 2.19 \mathrm{mmoles}$) in 7 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$ was refluxed for 4 hr . The mixt was cooled to room temp and the hydroquinone largely recovered by filtration. The filtrate was applied directly to a silica gel $(6 \mathrm{~g})$ column and partial purification was accomplished by eluting the desired product with $5 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ to pure $\mathrm{Et}_{2} \mathrm{O}$. The colored material so obtained was chromatographed on basic alumina ($100: 1$) to give the desired product, 382 mg , eluted with $10 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{C}_{6} \mathrm{H}_{8 .}$ Recrystn from heptane gave XII: mp 158-159 ; $[\alpha] \mathrm{D},-45^{\circ} ; \lambda_{\text {max }}^{\mathrm{MeOH}} 245 \mathrm{~m} \mu(\epsilon 14,800)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{F}$.

2',3' α-Tetrahydrofuran-2'-spiro-17-(6,7 α-diffuoromethylene$1,2 \alpha$-methylene-4-androsten-3-one) (XIII). A soln of dimethylsulfoxonium methylide was prepd from a suspension of NaH (40 mg of a 55% dispersion in mineral oil) and 220 mg of trimethylsulfoxonium iodide in 2 ml of anhydrous DMSO with vigorous stirring over 60 min . The clear soln was treated with a soln of 100 mg (0.266 mmole) of the diene XII in 2 ml of DMSO at room temp under N_{2}. After standing $17 \mathrm{hr}, \mathrm{H}_{2} \mathrm{O}$ was added and the solid was isolated by filtration. This material was adsorbed on a silica gel column (100:1). The desired product XIII was eluted with increasing concns of $\mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ up to 5%. Recrystn from $\mathrm{C}_{6} \mathrm{H}_{14}$ afforded 77.8 mg of XIII: $\mathrm{mp} 156-158^{\circ}$; [$\left.\alpha\right] \mathrm{D}+180^{\circ} ; \lambda_{\max }^{\mathrm{CH}} \mathrm{CH}^{2} 244 \mathrm{~m} \mu$ ($\epsilon 11,500$). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{F}$.

3'-(6,7 α-Difluoromethylene-1,2 2 -methylene-17 β-hydroxy-3-oxo-4-androsten-17 α-yl)propionic Acid Lactone (XIV). A soln prepd from 200 mg of the spiroether XIII, 2.8 ml of tert-butyl chromate, ${ }^{16} 0.8 \mathrm{ml}$ of glacial HOAc , and 0.4 ml of $\mathrm{Ac}_{2} \mathrm{O}$ in 4.0 ml of CCl_{4} was refluxed for 2.5 hr under N_{2}. The cooled reaction mixt was treated with 4 ml of a satd aqueous soln of oxalic acid. The organic layer was dild with CCl_{4} and was sepd from the aqueous layer. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concd to an amber oil which ran as a single spot on thin-layer chromatography
on silica gel. Chromatography of this material on 20 g of silica gel with increasing concns of EtOAc in $\mathrm{C}_{6} \mathrm{H}_{6}$ gave, initially, fractions of a dark oil. Continued elution gave the desired product XIV (140 mg) as a clear oil which readily crystd. Recrystn from aqueous $\mathrm{CH}_{3} \mathrm{OH}$ afforded a colorless solid: mp 183-185 ${ }^{\circ} ;[\alpha] \mathrm{D}+162.6^{\circ}$; $\lambda_{\text {max }} \mathrm{CH}_{3} 243 \mathrm{~m} \mu(\epsilon 11,600)$; mol wt 402 (mass spectrum). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{F}$.

References

(1) G. H. Rasmusson, A. Chen, G. F. Reynolds, D. J. Patanelli, A. A. Patchett, and G. E. Arth, 163rd National Meeting of the American Chemical Society, Boston, Mass., April 1972, MEDI 41.
(2) J. A. Cella and R. C. Tweit, J. Org. Chem., 24, 1109 (1959).
(3) R, F. Spark and J. C. Melby, Ann. Intern. Med., 69, 685 (1968).
(4) S. L. Steelman, J. R. Brooks, E. R. Morgan, and D. J. Patanelli, Steroids, 14, 449 (1969).
(5) G. E. Arth, H. Schwam, L. H. Sarett, and M. Glitzer, J. Med. Chem., 6, 617 (1963).
(6) R. Wiechert, H. Steinbeck, W. Elger, and F. Neumann, Arznem.Forsch., 17, 1103 (1967).
(7) E. J. Corey and M. Chaykovsky, J. Amer. Chem. Soc., 84, 867 (1962).
(8) R. Wiechert, Angew. Chem., 79, 815 (1967).
(9) G. W. Krakower and H. A. Van Dine, J. Org. Chem., 31, 3467 (1966)
(10) C. Beard, B. Berkoz, N. H. Dyson, I. T. Harrison, P. Hodge, L. H. Kirkham, G. S. Lewis, D. Grannini, B. Lewis, J. A. Edwards, and J. H. Fried, Tetrahedron, 25, 1219 (1969), and references cited.
(11) H. Budzikiewicz, C. Djerassi, and D. Williams, "Interpretation of Mass Spectra of Organic Compounds," Holden Day, San Franciso, Calif., 1964, p 54.
(12) G. F. Reynolds, G. Rasmusson, L. Birladeanu, and G. E. Arth, Tetrahedron Lett., 5057 (1970).
(13) J. R. Brooks, R. D. Busch, D. J. Patanelli, and S. L. Steelman, manuscript in preparation.
(14) H. L. Saunders, K. Holden, and J. R. Kerwin, Steroids, 3, 387 (1964); A. Zarate, V. B. Mahesh and R. B. Greenblatt, J. Clin. Endocrinol., 26, 1394 (1966), and references cited.
(15) R. O. Neri, M. D. Monahan, J. G. Meyers, B. A. Alfonso, and I. A. Tabachnick, Eur. J. Pharmacol., 1, 438 (1967).
(16) K. Heusler and A. Wettstein, Helv. Chim. Acta, 35, 284 (1952).

Azaindole Anthelmintic Agents

Michael H. Fisher,* George Schwartzkopf, Jr., and Dale R. Hoff

Merck Sharp and Dohme Research Laboratories, Division of Merck \& Co., Inc., Rahway, New Jersey 07065.
Received June 6, 1972

A series of 2-substituted azaindoles, isosteric with analogous anthelmintic benzimidazoles related to thiabendazole, was synthesized. The most promising of these, 2 -(4-thiazolyl)-6-azaindole, proved to be effective against the abomasal parasite Haemonchus contortus in sheep at $100 \mathrm{mg} / \mathrm{kg}$ but lacked the breadth of spectrum of thiabendazole.

2-(4-Thiazolyl)benzimidazole, thiabendazole, reported from these laboratories in 1961, ${ }^{1}$ has gained wide acceptance as a safe, broad-spectrum anthelmintic agent. In a continuing attempt to extend this activity to other heterocyclic systems, ${ }^{2}$ a series of azaindoles of related structure was synthesized for biological testing.
Chemistry. The chemistry of azaindoles has recently been reviewed by Willette. ${ }^{3}$ Azaindoles prepared are listed in Tables I, II, and III. Intermediates are shown in Tables IV and V. Synthetic procedures, generalized where possible, are described in the Experimental Section.
2-Phenyl-4-, 5-, 6-, and 7-azaindoles (16, 1, 9, and 15)
were prepared by cyclization of the appropriate o-benzamidopicolines, using the standard Madelung procedure. ${ }^{4}$ However, the strongly basic conditions and high temperatures necessary in this reaction made it unsuitable for the synthesis of azaindoles bearing sensitive substituents. New azaindole syntheses were devised to provide the required compounds.
2-(2-Thiazolyl)-6-azaindole (14) was obtained from ethyl 6 -azaindole-2-carboxylate (5) ${ }^{5}$ by a series of straightforward chemical manipulations via compounds 6,7, and 8 .
There have been several reports ${ }^{6}$ describing the formation of 5-membered heterocycles via nitrene intermediates

Table I. 5-Azaindoles

Compd	R	Syn method	\% yield	 Recrystn solvent	Mp, ${ }^{\circ} \mathrm{C}$	Formula	Analysis	Anthelmintic act.
1	$\mathrm{C}_{6} \mathrm{H}_{5}$	A, C	14	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	282-283	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2}$	C, H, N	200
2	$2-\mathrm{FC} 6_{6} \mathrm{H}_{4}$	C	15	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	205-208 dec	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FN}_{2}$	C, H, N	200
3		C	9.7	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	275-279 dec	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}$	C, H, N, S	200
4		C	7.4	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	248-252 dec	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}$	C, H, N	I

Table II. 6-Azaindoles

Compd	R	Syn method	\% yield	 Recrystn solvent	Mp, ${ }^{\circ} \mathrm{C}$	Formula	Analysis	Anthelmintic act.	
5	$\mathrm{COOC}_{2} \mathrm{H}_{5}$		44	EtOAc	212-214	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, N	I	
6	CONH_{2}		97	$\mathrm{H}_{2} \mathrm{O}$	320-330	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$	C, H, N	I	
7	CN		72.4	EtOH	305-310	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3}$	C, H, N	I	
8	CSNH_{2}		65.7	EtOH	>325	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}$	C, H, N, S	I	
9	$\mathrm{C}_{6} \mathrm{H}_{5}$	A	14.2	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	223-225	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2}$	C, H, N	200	
10	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	C	22	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	201-202	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FN}_{2}$	C, H, N, F	I	
11	$2-\mathrm{C}_{10} \mathrm{H}_{7}$	C	12.4	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	263-264	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2}$	C, H, N	200	
12	$\cdots 1$	C	13.2	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	235-236	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}$	C, H, N, S	I	
13	$\\|_{S}$	C	14.1	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$	247-248	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}$	C, H, N, S	50	
14			13.2	Sublimed $110^{\circ}(0.1 \mathrm{~mm})$	234-235	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}$	C, H, N, S	I	

Table III, Miscellaneous Azaindoles

Table IV. 3-Arylvinylpy ridine 1-Oxides

Table V. 4-Arylvinyl-3-nitropyridines

obtained by the thermal decomposition of aryl azides, and this type of synthesis appeared to be applicable to azaindoles. Accordingly, 4-chloro-3-styrylpyridine 1 -oxide ${ }^{7}$ was converted with hydrazine into 4 -hydrazino-3-styrylpyridine 1 -oxide (18) which with sodium nitrite gave 4 -azido-3styrylpyridine 1 -oxide (19). Decomposition of the azide in refluxing toluene gave a good yield of 2-phenyl-5-azaindole 5 -oxide (17), which was reduced to 2-phenyl-5-azaindole (1) by $\mathrm{Zn}-\mathrm{AcOH}$.

Cadogan and his associates ${ }^{8}$ have extensively studied the deoxygenation of aryl nitro and nitroso compounds with triethyl phosphite and the utility of this reaction for the preparation of carbazoles, indoles, indazoles, and triazoles. The successful conversion of 19 to 17 and the ready availability of suitable nitropyridines prompted us to study the application of similar reductive cyclizations to azaindole synthesis. The conversion of 4-nitro-3-styrylpyridine 1 oxide 9 to 2 -phenyl- 5 -azaindole (1) was used to establish the best reaction conditions, which were refluxing with 6 moles of triethyl phosphite in dry benzene under nitrogen for 7 days. 1-Deoxygenation occurred during the reaction. Compounds 2,3 , and 4 were obtained similarly.

The 6 -azaindoles $10,11,12$, and 13 were synthesized by similar reductive cyclization of 3-nitro-4-(2-arylvinyl)pyridines. The 3 -nitro-4-(2-arylvinyl)pyridine and 4 -nitro-3-(2-arylvinyl)pyridine 1 -oxide intermediates were prepared by base-catalyzed condensation of the appropriate aldehydes with either 3-nitro-4-picoline or 4-nitro-3-picoline 1-oxide.

Biological Activity. Biological results are shown in Tables I, II, and III. The column showing anthelmintic activity indicates the lowest oral dose in $\mathrm{mg} / \mathrm{kg}$ which demonstrated activity against trichostrongyles in a laboratory animal model assay \dagger or inactivity (I) at $200 \mathrm{mg} / \mathrm{kg}$. The most potent compound (13) was tested against a braod range of parasites in sheep. At a single oral dose of 100 $\mathrm{mg} / \mathrm{kg}$ it was effective against Haemonchus contortus but essentially inactive against all other parasites present.
Structure-Activity Relationships. Preliminary anthelmintic testing of 2 -phenyl-4-, $5-, 6-$, and 7 -azaindoles showed that 2 -phenyl-4- and 7 -azaindoles $(16,15)$, were inactive, whereas 2 -phenyl- 5 - and 6 -azaindoles $(1,9)$ were active at $200 \mathrm{mg} / \mathrm{kg}$. These compounds can be viewed as analogs of thiabendazole in which one of the benzimidazole nitrogen atoms has been moved into the aromatic ring. Should structure-activity relationships similar to benzimidazoles hold, the highest activity would be expected with

thiabendazole

16

15

1

H
9
azaindoles in which the 2 -substituent was o-fluorophenyl, 2-naphthyl, 2-thienyl, 2-thiazolyl, and 4-thiazolyl. Accordingly, a selection of 5 - and 6 -azaindoles bearing these substituents in the 2 position was evaluated for anthelmintic activity. Structure-activity correlations between the benzimidazole and azaindole series were at best only partially successful. In the 5 -azaindole series, the 2-phenyl (1), 2-o-
\dagger A modification of the method described by Lynch and Nelson. ${ }^{10}$

Table VI

Compd	$\mathrm{p} K_{\mathrm{a}}$ $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$	$K_{\mathrm{D}}=\frac{[\mathrm{pH} 7.2 \text { buffer }]}{[\text { [oleyl alcohol] }]}$	Anthel- mintic act.
Thiabendazole	4.58	0.03	A 12.5
1	7.5	0.40	A 200
3	7.6	0.54	A 200
4	7.5	0.05	I
9	7.5	0.2	A 200
10	7.1	0.11	I
11		0.08	A 200
12	7.3	0.09	I
13	7.3	1.0	A 50
14	6.5	1.0	I
15			I
16	6.4	I	

fluorophenyl (2), and 2-(2-thienyl) (3) derivatives were active whereas 2 -(4-thiazolyl)-5-azaindole (4) was surprisingly inactive. In the 6 -azaindole series the 2-phenyl (9), 2-(2-naphthyl) (11), and 2-(4-thiazolyl) (13) derivatives were active, whereas the 2 -o-fluorophenyl (10), 2-(2-thienyl) (12), and 2-(2-thiazolyl) (14) derivatives were inactive.

In an attempt to better understand these puzzling deviations in structure-activity, the $\mathrm{p} K_{\mathrm{a}}$ values and distribution coefficients were measured and compared with activity for several of the compounds (Table VI). Unfortunately, no obvious correlation could be discerned.

Experimental Section ${ }^{\ddagger}$

Method A. 2-Phenyl-4-azaindole (16). To a solution of 1.4 g (0.06 g -atom) of Na in 30 ml of EtOH was added $1.372 \mathrm{~g}(0.006$ mole) of 3-benzamido-2-picoline. The resulting solution was evaporated to dry ness and then heated for 15 min at $310-320^{\circ}$ under nitrogen. Ice water was added to the cooled mixture, and the solid residue was collected, dried, and sublimed at $200^{\circ}(0.1 \mathrm{~mm})$. The sublimate crystallized from $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, 0.3 \mathrm{~g}(18.7 \%)$; mp 255$256^{\circ}$. Anal. ($\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2}$) C, H, N.

2-Carbamoyl-6-azaindole (6). A suspension of 3.86 g of ethyl 6 -azaindole-2-carboxylate ${ }^{5}$ in 30 ml of MeOH and 30 ml of liquid NH_{3} was heated for 8 hr at 100°. Evaporation yielded the product which was crystallized from $\mathrm{H}_{2} \mathrm{O}, 3.175 \mathrm{~g}$ (97%); mp $320-330^{\circ} \mathrm{dec}$. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Cyano-6-azaindole (7). A suspension of 2.81 g of 6 in 20 ml of POCl_{3} was refluxed for 5 min . The cooled solution was poured onto NH_{3}-ice, and the precipitate was collected. Crystallization from EtOH gave $1.808 \mathrm{~g}(72.4 \%)$, mp 305-310 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3}\right)$ C, H, N.

2-Thiocarbamoyl-6-azaindole (8). $\quad \mathrm{H}_{2} \mathrm{~S}$ was passed into a solution of 1.608 g of 7 in 25 ml of pyridine and 2.5 ml of triethylamine for 1 hr . The solution was allowed to stand at room temperature for 1 hr and then diluted with 125 ml of $\mathrm{H}_{2} \mathrm{O}$. The product separated after standing at $0^{\circ}, 1.307 \mathrm{~g}(65.7 \%), \mathrm{mp}>325^{\circ}$. Crystallization from EtOH gave no change in mp. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}$, N, S.

2-(2-Thiazolyl)-6-azaindole (14), A solution of 0.1 g (0.0006 mole) of 8 and $0.5 \mathrm{ml}(0.0026 \mathrm{~mole})$ of $40 \% \mathrm{ClCH}_{2} \mathrm{CHO}-\mathrm{H}_{2} \mathrm{O}$ in 2 ml of EtOH was heated to dryness on a steam bath. The residue was dissolved in 2 ml of $\mathrm{H}_{2} \mathrm{O}$ and heated on a steam bath for 2 hr .
\ddagger Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values. Melting points were taken on a ThomasHoover Uni-Melt apparatus and are uncorrected.

Neutralization with NaHCO_{3} precipitated a small amount of gum which was filtered off. The filtrate deposited the product, 15 mg (13.2\%), mp 226-227 ${ }^{\circ}$. Sublimation at $110^{\circ}(0.1 \mathrm{~mm})$ raised the mp to 234-235 . Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4-Hydrazino-3-styrylpyridine 1 -Oxide (18). A mixture of 5 g of 4-chloro-3-styrylpyridine 1 -oxide ${ }^{7}$ (0.022 mole) and 6.9 ml of $95 \% \mathrm{NH}_{2} \mathrm{NH}_{2}(0.22 \mathrm{~mole})$ in 50 ml of MeOH was refluxed for 3 hr . The product separated on cooling. Crystallization from $\mathrm{CHCl}_{3}-$ EtOH gave 2.93 g (59.7%), mp 188-190 . Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}\right) \mathrm{C}$, H, N.

4-Azido-3-styrylpyridine 1-Oxide (19). A solution of 1.7 g of $\mathrm{NaNO}_{2}(0.025$ mole $)$ in 20 ml of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise to a stirred solution of $5.4 \mathrm{~g}(0.024$ mole $)$ of 18 in 100 ml of $10 \% \mathrm{HCl}$ at 10°. The mixture was stirred for 1 hr at room temperature, then basified with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with CHCl_{3}. The extract was dried with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and evaporated, and the product was crystallized from $\mathrm{Me}_{2} \mathrm{CO}, 5.5 \mathrm{~g}(97 \%), \mathrm{mp} 210-215^{\circ}$. The picrate crystal lized from EtOH, mp 219-224 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$.

2-Phenyl-5-azaindole 5 -Oxide (17). A solution of 1.31 g of 19 in 260 ml of toluene was refluxed for 18 hr . After cooling, the product was filtered off and recrystallized from $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, 1.1 \mathrm{~g}$ (95.2%), mp 271-274 . Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Deoxygenation with $\mathrm{Zn}-\mathrm{AcOH}$ gave 2-phenyl-5-azaindole, mp 282-283 .

Method B. 3-Nitro-4-[2-(2-thienyl)vinyl]pyridine (25). A solution of 5.6 g (0.05 mole) of 2-thiophenecarboxaldehyde, 6.7 g (0.048 mole) of 3-nitro-4-picoline, and 2 ml of piperid ine in 25 ml of MeOH was refluxed for 6 hr and cooled, and the product was filtered off and crystallized from $\mathrm{MeOH}, 4.1 \mathrm{~g}$ (36.4%), mp $108-$ 109°. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

Method C. 2-(4-Thiazolyl)-6-azaindole (13). A mixture of $16.5 \mathrm{~g}(0.071 \mathrm{~mole})$ of 25 and 82.5 ml (0.5 mole) of $\mathrm{Et}_{3} \mathrm{PO}_{3}$ in 11 . of dry $\mathrm{C}_{6} \mathrm{H}_{6}$ was refluxed for 7 days under N_{2}. The solvent was evaporated, and the residue was stirred for 10 min with 800 ml of $\mathrm{H}_{2} \mathrm{O}$ to decompose the excess of $\mathrm{Et}_{3} \mathrm{PO}_{3}$. The mixture was acidified with AcOH and stirred for 5 min , and unreacted starting material was extracted with CHCl_{3}. The aqueous portion was basified with NaHCO_{3} and evaporated to dryness, the inorganic salts were dissolved out with a little water, and the product remaining was crystallized from $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, 2.1 \mathrm{~g}(14.1 \%)$, mp 247-248 ${ }^{\circ}$. A nal. $\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
Acknowledgments. The anthelmintic results reported were obtained by Drs. W. C. Campbell and J. R. Egerton and the staff of the Parasitology Department, Merck Sharp and Dohme Research Laboratories. Microanalyses were determined by Mr. R. N. Boos.

References

(1) H. D. Brown, A. R. Matzuk, I. R. Ilves, L. H. Peterson, S. A. Harris, L. H. Sarett, J. R. Egerton, J. J. Yakstis, W. C. Campbell, and A. C. Cuckler, J. Amer. Chem. Soc., 83, 1764 (1961).
(2) Michael H. Fisher and Aino Lusi, J. Med. Chem., 15, 982 (1972).
(3) R. E. Willette, Advan. Heterocycl. Chem., 9, 27 (1968).
(4) W. Madelung, Chem. Ber., 45, 1128 (1912).
(5) Michael H. Fisher and Alexander R. Matzuk, J. Heterocycl. Chem., 6, 775 (1969).
(6) (a) G. Smolinsky, J. Amer. Chem. Soc., 82, 4717 (1960); (b) G. Smolinsky, J. Org. Chem., 26, 4108 (1961); (c) G. Smolinsky and B. I. Feuer, ibid., 29, 3097 (1964); (d) J. H. Hall and D. R. Kamm, ibid., 30, 2092 (1965); (e) L. Krbechek and H. Takimoto, ibid., 29, 3630 (1964).
(7) E. C. Taylor and A. J. Crovetti, ibid., 25, 850 (1960).
(8) J. I. G. Cadogan, Quart. Rev., Chem. Soc., 22, 222 (1968).
(9) D. Jerschel and H. E. Heck, Justus Liebigs Ann. Chem., 613, 171 (1958).
(10) John E. Lynch and Barbara Nelson, J. Parasitol., 45, 659 (1959).

